

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 593-594 (2000) 489-493

Communication

Convenient syntheses of novel ruthenium catalysts bearing N-heterocyclic carbenes^{\ddagger}

Walter Baratta ^{a,1}, Wolfgang A. Herrmann ^{b,*}, Pierluigi Rigo ^a, Jürgen Schwarz ^b

^a Dipartimento di Scienze e Tecnologie Chimiche, Università di Udine, via Cotonificio 108, I-33100 Udine, Italy

^b Anorganisch-chemisches Institut, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received 9 August 1999; accepted 23 September 1999

Abstract

The 16-electron ruthenium(II) complexes $Cp^*Ru[\overline{C}(R)N(H)C=C(H)\dot{N}(R)]Cl (Cp^* = \eta^5-C_5Me_5; R = Cy (ICy), 1a; Mes (IMes), 1b) containing$ *N* $-heterocyclic carbenes are easily accessible in quantitative yields from <math>[Cp^*Ru(OMe)]_2$ (Me = CH₃) and the corresponding 1,3-diorganylimidazolium chloride by methanol elimination. Compounds 1a-b can also be prepared in 75–80% yield by treating the commercially available polymeric ruthenium(III) compound $[Cp^*RuCl_2]_n$ with the free 1,3-diorganylimidazolin-2-ylidenes in 1 to 1.5 molar amounts. 1a reacts with CO, PPh₃, pyridine and ethyl diazoacetate (EDA) affording the 18-electron derivatives $Cp^*Ru(ICy)(L)Cl (L = CO, 2; PPh_3, 3; py, 4; CHCO_2Et, 5)$. The mixed dicarbene complex 5 is the first isolable ruthenium cyclopentadienyl species bearing a CHCO₂Et moiety. Compounds 1a-b catalyze the carbon–carbon coupling of terminal alkynes HC=CR (R = Ph, SiMe₃, 'Bu, p-Tol) under mild conditions, with the selectivity strongly depending on the substituent R. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Ruthenium; Carbenes; Alkyne coupling; Homogeneous catalysis

1. Introduction

Coordinatively unsaturated ruthenium complexes continue to attract a great deal of interest because of their implications in manifold catalytic transformations involving C–C and C–H bond formation [1]. Free *N*-heterocyclic carbenes, having bulky substituents, have recently been shown to be suitable ligands to afford highly active catalysts with several transition metals [2]. As regard to ruthenium chemistry, the complexes RuCl₂(L)₂(=CHPh) (L = imidazolin-2-ylidene, phosphine) have been found to be very efficient catalytic precursors for olefin metathesis [3]. In spite of the

* Corresponding author.

vast number of publications on cyclopentadienyl ruthenium complexes of general formula (η^5 -C₅R₅)Ru(L)₂X (R = H, Me; L = phosphine, alkene; X = halogen), there are very few reports dealing with their application in catalysis [4]. Recently we have shown that (η^5 -C₅H₅)Ru(PPh₃)₂Cl catalyzes the stereoselective formation of *cis*-enediones from α -diazo carbonyl compounds via displacement of one phosphine [5]. Although Cp*Ru(L)X type 16-electron complexes have been isolated using bulky phosphino ligands [6], the employment of sterically demanding *N*-heterocyclic carbenes has not been considered until a very recent communication [3c].

We now describe two simple routes to prepare the highly reactive, coordinatively unsaturated half-sandwich derivatives Cp*Ru[C(R)N(H)C=C(H)N(R)]Cl(R = Cy, 1a; Mes, 1b) on a gram scale. Stoichiometric reactions of 1a-b with several ligands as well as catalytic transformations of alkynes promoted by 1a-b are reported.

^{*} Communication 24 of the series: '*N*-Heterocyclic Carbenes'; Preceding paper: M. Prinz, M. Grosche, E. Herdtweck, W.A. Herrmann, Organometallics (1999) submitted.

E-mail addresses: inorg@dstc.uniud.it (W. Baratta), her-mann.jom@ch.tum.de (W.A. Herrmann)

¹ Also corresponding author.

2. Results and discussion

2.1. Preparation and reactivity of 1a-b

The 16-electron complexes 1a-b can be easily prepared by two different synthetic pathways. Treatment of a THF solution of the di- μ -methoxo derivative $[Cp*Ru(OMe)]_2$ [7] with the corresponding 1,3-diorganylimidazolium chloride affords compounds 1a-b, as a result of methanol elimination. 1a-b are formed quantitatively, as monitored by NMR, and were isolated in > 85% yields after extraction with diethyl ether (Scheme 1).

Scheme 1. Syntheses of the coordinatively unsaturated complexes 1a-b (Cp* = η^5 -C₅Me₅, Cy = cyclohexyl, Mes = mesityl).

Alternatively, compounds **1a-b** can also be prepared by the reaction of commercially available $[(\eta^5 C_5Me_5$ RuCl₂]_n with 1.5 equivalents of the corresponding free carbones to give 1a-b in >75% yield. In this case, the free carbenes act both as strong coordinating ligands and reducing reagents [8]. The remarkable highfield ¹³C-NMR resonances of the Cp* ring carbon atoms ($\delta = 73.3$, 1a; 73.0, 1b) are similar to those reported for other coordinatively unsaturated halfsandwich ruthenium complexes [3c,6], suggesting that **1a-b** are apparently monomeric in solution. Although complexes 1a-b exhibit relatively low air sensitivity in the solid state, they are highly soluble in toluene, affording deep blue solutions, which promptly turn brown if air is admitted. According to the coordinative unsaturation of 1a-b, these compounds promptly react with CO, PPh₃ and pyridine to give quantitatively the corresponding 18-electron complexes Cp*Ru(ICy)(L)Cl $(L = CO, 2; PPh_3, 3; Py, 4)$, which were isolated and fully characterized (Eq. (1)) [9].

The carbonyl derivative **2** exhibits a v_{CO} stretching frequency at 1914 cm⁻¹ (Nujol). The ¹³C-NMR spectrum of **2** in C₆D₆ at 70°C reveals signals at δ 298.5 and

at 93.5 ppm for the CO and Cp* ligands, respectively. The ³¹P-NMR spectrum of **3** displays a resonance at 47.6 ppm and in the ¹³C-NMR spectrum the Cp* ligand appears as a doublet at 84.7 ppm (J(C, P) = 2.0 Hz) at 25°C. The ¹³C-NMR spectrum of 4 (C_6D_6 , 25°C) shows a single resonance for the two NCH carbons of the imidazolin-2-ylidene based ring system at δ 117.7, indicating that rotation around the Ru-C_{carbene} bond is relatively fast on the ¹³C-NMR time scale. By way of contrast, no reaction of 1a with ethylene (1 atm) and dihydrogen (1 atm) was observed in C₆D₆ at room temperature. In line with our previous findings that $(\eta^{5}-C_{5}H_{5})Ru(PPh_{3})(=CHCO_{2}Et)Cl$ is the key intermediate for the selective carbene transfer reactions from EDA [5], we succeeded in preparing a mixed dicarbene complex, which contains both one electrophilic and one N-heterocyclic carbene ligand. Thus, reaction of 1a in toluene at -10° C with EDA affords the complex Cp*Ru(ICy)(=CHCO₂Et)Cl) (5), which was isolated and characterized as an analytically pure compound (Scheme 2).

Scheme 2. Reactivity of 1a towards ethyl diazoacetate (EDA).

The ¹H- and ¹³C-NMR spectra of **5** show resonances for the Ru=*CH* moiety at δ 16.0 (¹H-NMR) and 260.6 ppm (¹³C-NMR), respectively, while the ring carbon atoms of the Cp* appear at 101.1 ppm. Whereas compound **5** is indefinitely stable in solid state, it slowly reacts in solution (C₆D₆) to give **1a** and 0.5 equiv. of free diethyl maleate within 2 days at room temperature, as a result of a stereoselective carbene degradation process yielding the *cis* olefin only.

2.2. Catalytic alkyne dimerization

The transition metal mediated dimerization of terminal alkynes is of considerable interest because it can lead to a wide variety of organic enyne and oligoacetylene products, that are useful synthetic precursors for organic conducting polymers and other carbon-rich derivatives [4,10]. However, its synthetic application in organic synthesis has been limited due to low selectivity on dimeric products [11]. It has been reported that dimerization of alkynes and coupling reactions of alkynes with alkenes occur in presence of catalytic amounts of $(\eta^5-C_5R_5)Ru(L)_nX_m$ (L = phosphine, vinylidene; X = H, Cl) type complexes through dissociation of one ligand [4f–i]. Furthermore, ruthenacyclopentadienes are obtained from acetylene with $(\eta^5-C_5R_5)Ru(P'Pr_3)Cl$ or PhC=CH with $(\eta^5-C_5H_5)Ru(COD)Cl$ as results of stoichiometric carbon–carbon coupling reactions [12]. Therefore our investigation on the catalytic activity of **1a–b** with alkynes was substantially mandated.

When a toluene solution of phenylacetylene is treated with 1 mol% of **1a** under an argon atmosphere at room temperature, quantitative conversion occurs within 5 minutes in a very fast and exothermic reaction to give the dimeric coupling products I-III, the derivative Ibeing the major product present in solution (Eq. (2)).

To explore the scope of this catalytic reaction, the dimerization of other terminal alkynes was investigated under similar reaction conditions. Both conversion and selectivity are strongly dependent on the alkyne as well as the *N*-heterocyclic carbene substituents (Table 1).

For $\mathbf{R} = \operatorname{SiMe}_3$ (1a, entry 4) the selectivity is reversed with respect to $\mathbf{R} = \operatorname{Ph}$, *p*-Tol and 'Bu (entries 1–3, 5, 6) giving III (92%) as the main coupling product and only 8% of I. A maximum turn over frequency of 10320 h^{-1} (turn over number = 860) (entry 3) was achieved

 Table 1

 Catalytic dimerization of terminal alkynes

for phenylacetylene as the most active substrate. By contrast, no catalytic reaction with 1a or 1b occurred in the case of primary alkynes such as PhCH₂C=CH. It is noteworthy that when 1b, bearing two mesityl substituents, is used instead of 1a, an inverse selectivity was observed for R = Ph and R = p-Tol (entries 7 and 8). In all cases the head-to-tail coupling product III is formed with very high selectivity, when complex 1b is employed. In addition, when catalysts 1a-b are employed with terminal alkynes bearing electron withdrawing groups, HC = CCOR (R = OMe, OEt, H) or with internal alkynes $RO_2CC \equiv CCO_2R$ (R = Me, Et), the chemoselectivity completely changes and benzene derivatives are obtained in almost quantitative yields. Although the detailed mechanism and the nature of the intermediate species have not been clearly elucidated, it is likely that the carbon–carbon coupling products form via a ruthenacyclopentadiene complex similar to that isolated by Yi and co-workers, from Cp*Ru(PPh₃)₂Cl and acetylene by displacement of one phosphine [4e].

In summary, employment of the easily accessible $[Cp*Ru(OMe)]_2$ and the corresponding imidazolium chloride salts offers a general entry into the chemistry of this new class of ruthenium cyclopentadienyl complexes. Sterically demanding 1,3-disubstituted *N*-heter-cocyclic carbenes as strong σ - and π -donors stabilize the 16-electron coordinatively unsaturated species by preventing dimerization or solvent coordination. Complexes **1a**-**b** represent one of the most active catalyst systems for alkyne dimerization reported to date. The application of these highly reactive compounds in other carbon–carbon forming processes and carbene transfer reactions from diazo compounds are currently under investigation.

3. Experimental

All reactions were carried out with dried solvents under an argon atmosphere using standard Schlenk

Catalyst (mol%)	R	Time	Product ratio I:II:III	Conversion ^a (%)	
1a (1.0)	Ph	5 min	76:16:8	100	
1a (0.5)	Ph	5 min	76:16:8	100	
1a (0.1)	Ph	5 min	76:16:8	86	
1a (1.0)	SiMe ₃	2 h	8:0:92	100	
1a (1.0)	^t Bu	10 min	90:0:10	100	
1a (1.0)	<i>p</i> -Tol	5 min	44:38:18	100	
1b (1.0)	Ph	2 h	0:10:90	95	
1b (1.0)	<i>p</i> -Tol	2 h	0:4:96	95	
1b (1.0)	SiMe ₃	24 h	0:0:100	22	
	Catalyst (mol%) 1a (1.0) 1a (0.5) 1a (0.1) 1a (1.0) 1a (1.0) 1a (1.0) 1b (1.0) 1b (1.0) 1b (1.0)	Catalyst (mol%) R 1a (1.0) Ph 1a (0.5) Ph 1a (0.1) Ph 1a (1.0) SiMe ₃ 1a (1.0) 'Bu 1a (1.0) P-Tol 1b (1.0) P-Tol 1b (1.0) SiMe ₃	Catalyst (mol%)RTime1a (1.0)Ph5 min1a (0.5)Ph5 min1a (0.1)Ph5 min1a (1.0)SiMe_32 h1a (1.0)'Bu10 min1a (1.0) p -Tol5 min1b (1.0)Ph2 h1b (1.0) p -Tol2 h1b (1.0) p -Tol2 h1b (1.0)SiMe_324 h	Catalyst (mol%)RTimeProduct ratio I:II:III1a (1.0)Ph5 min76:16:81a (0.5)Ph5 min76:16:81a (0.1)Ph5 min76:16:81a (1.0)SiMe_32 h8:0:921a (1.0)'Bu10 min90:0:101a (1.0) p -Tol5 min44:38:181b (1.0)Ph2 h0:10:901b (1.0) p -Tol2 h0:4:961b (1.0)SiMe_324 h0:0:100	

^a Product yields were determined by GC-MS using diethylene glycol-n-butylether as an internal standard.

techniques. The ruthenium complex $[Cp*Ru(OMe)]_2$ [13], 1,3-diorganylimidazolium chlorides and free 1,3diorganylimidazolin-2-ylidenes were prepared according to the literature procedures [14]. $[Cp*RuCl_2]_n$ and the other chemicals were purchased from Aldrich and used without further purification. The NMR spectra were recorded on a Bruker AC 200 instrument; the ¹H and ¹³C chemical shifts, in ppm, are relative to TMS, while H₃PO₄ is used for ³¹P. Mass spectra were performed at the TU München Mass Spectrometry Laboratory on a Finnigan MAT 90 spectrometer using the CI (isobutane) technique. All elemental analyses were carried out with a Carlo Erba 1106 elemental analyzer.

3.1. Synthesis of $Cp^*Ru[\dot{C}(Cy)N(H)C=C(H)\dot{N}(Cy)]Cl$ (1a)

3.1.1. Method 1

A suspension of $[Cp*Ru(OMe)]_2$ (1.00 g, 1.87 mmol) and 1,3-dicyclohexylimidazolium chloride (1.26 g, 4.67 mmol) in THF (20 ml) was stirred at 45°C for 1 h. THF was removed in vacuo and the product was extracted with 30 ml of diethyl ether. Further purification could be achieved by recrystallization from hot diethyl ether.

Yield: 1.64 g (3.25 mmol, 87%); ¹H-NMR (200.1 MHz, C₆D₆, 25°C): δ 6.51 (s, 2H, NCH), 4.39 (br, 2H, CH of NCy), 2.13–0.72 (br, 20H, CH₂ of NCy), 1.65 (s, 15H, C₅Me₅). ¹³C-NMR (50.3 MHz, C₆D₆, 25°C): δ 196.6 (NCN), 116.9 (NCH), 73.4 (C₅Me₅), 59.5 (NCH of NCy), 34.8, 34.0, 26.3, 26.0 and 25.7 (CH₂ of NCy), 11.8 (C₅Me₅). Found: C, 59.84; H, 7.69; N, 5.71. Anal. Calc. for C₅₅H₃₉N₂ClRu (504.12): C, 59.56; H, 7.80; N, 5.56.

3.1.2. Method 2

A suspension of $[Cp*RuCl_2]_n$ (300 mg, 0.98 mmol) in THF (6 ml) was treated with a solution of 1,3-dicyclohexylimidazolin-2-ylidene (1.46 mmol) in THF (0.70 ml) and stirred at room temperature for 3 h, during this time the reaction mixture turned deep blue from being initially brown. The product was worked up as described in method 1. Yield: 375 mg (0.74 mmol, 76%).

3.2. Synthesis of $Cp^*Ru[C(Mes)N(H)C = C(H)N(Mes)]Cl$ (1b)

3.2.1. Method 1

A suspension of $[Cp*Ru(OMe)]_2$ (1.00 g, 1.87 mmol) 1,3-dimesitylimidazolium chloride (1.59 g, 4.67 mmol) in THF (20 ml) was stirred at 45°C for 1 h. THF was removed in vacuo and the product was extracted with 30 ml of diethylether. Further purification could be achieved by recrystallization from hot heptane. Yield: 1.92 g (3.33 mmol, 89%); ¹H-NMR (200.1 MHz, C₆D₆, 25°C): δ 6.75 (s, 2H, Mes), 6.20 (s, 2H, NCH), 2.27 (br, 12H, o-CH₃ of Mes), 2.12 (s, 6H, p-CH₃ of Mes), 1.23 (s, 15H, C₅Me₅). ¹³C-NMR (50.3 MHz, C₆D₆, 25°C): δ 200.2 (NCN), 138.1, 137.5, 136.9 and 130.3 (4 × Mes), 123.1 (NCH), 73.0 (C₅Me₅), 21.0, 20.0 and 19.0 (CH₃ of Mes), 10.8 (C₅Me₅). Found: C, 64.81; H, 6.78; N, 4.93. Anal. Calc. for C₃₁H₃₉N₂ClRu (576.19): C, 64.62; H, 6.82; N, 4.86.

3.2.2. Method 2

A suspension of $[Cp*RuCl_2]_n$ (300 mg, 0.98 mmol) in THF (6 ml) was treated with a solution of 1,3-dimesitylimidazolin-2-ylidene (1.46 mmol) in THF (0.70 ml) and stirred at room temperature for 3 h, during this time the reaction mixture turned deep blue from being initially brown. The product was worked up as described in method 1. Yields: 443 mg (0.77 mmol, 79%).

3.3. Synthesis of $Cp^*Ru[C(Cy)N(H)C=C(H)N(Cy)](=CHCO_2Et)Cl$ (5)

A toluene solution (4 ml) of 1a (200 mg, 0.26 mmol) was cooled at -10° C and treated with EDA (89 mg, 0.78 mmol). After the N₂-evolution stopped, the solvent was removed in vacuo. Pentane (8 ml) was added to the oily residue to give the product as a brown solid. Yield: 112 mg (0.19 mmol, 73%); ¹H-NMR (C₆D₆, 25°C, ppm): δ 16.04 (s, 1H, CHCO₂Et), 7.45 (bs, 2H, CH of NC₆H₁₁), 6.73 (bs, 2H, NCH), 3.67 (q, 2H, CH_2CH_3 , ${}^{3}J(H, H) = 7.6$ Hz), 1.84–0.73 (br, 23H, CH_2 of NC_6H_{11} and CH_2CH_3), 1.25 (s, 15H, CH_3 of C_5Me_5). ¹³C-NMR (C_6D_6 , 25°C, ppm): δ 260.6 (CHCO₂Et), 181.7 (CO), 171.1 (NCN), 119.9 and 118.5 (NCH), 101.1 (C₅Me₅), 60.9 and 58.8 (NCH of NC₆H₁₁), 59.9 (CH₂CH₃). 35.3, 35.0, 33.8, 33.5, 33.9, 26.3, 26.2, 25.9, 25.5 and 25.1 (CH₂ of NC₆H₁₁), 13.9 (CH₂CH₃), 10.0 (CH₃ of C₅Me₅). Found: C, 59.65; H, 7.73; N, 4.97. Anal. Calc. for C₂₉H₄₅N₂O₂ClRu: C, 59.02; H, 7.68; N, 4.75.

3.4. General procedure for dimerization catalysis

The solutions for alkyne dimerization studies were typically prepared as follows: the alkyne (0.1 mmol), internal standard (diethylene glycol-*n*-butylether) and catalyst were added to 3 ml of toluene under an argon atmosphere. The reaction progress was monitored by the removal of a small aliquot of the reaction mixture which was analyzed by GC–MS. After the reaction time (Table 1), the reaction was quenched by exposure of the reaction mixture to air and a small aliquot was taken for GC–MS analysis. Products were identified by comparisons with authentic samples. In addition, the structures of the dimeric products were unequivo-cally established by spectroscopic methods.

Acknowledgements

We thank the Consorzio Universitario del Friuli in sponsorship of a fellowship for J.S. and we gratefully acknowledge the financial support from Ministero della Ricerca Scientifica e Tecnologica (MURST), the Bayerische Forschungsstiftung (FORKAT) and the Fonds der Chemischen Industrie.

References

- (a) P. Schwab, M.B. France, R.H. Grubbs, J.W. Ziller, Angew. Chem. 197 (1995) 2179; Angew. Chem. Int. Ed. Engl. 34 (1995) 2039. (b) R.H. Grubbs, S.J. Müller, G.C. Fu, Acc. Chem. Res. 1995, 28, 446. (c) A. Fürstner, Top. Catal. 4 (1997) 285. (d) W. Stüer, J. Wolf, H. Werner, P. Schwab, M. Schulz, Angew. Chem. 110 (1998) 3603; Angew. Chem. Int. Ed. 37 (1998) 3421. (e) A. Fürstner, A.F. Hill, M. Liebl, J.D.E.T. Wilton-Ely, Chem. Commun. (1999) 601. (f) R. Stragies, M. Schuster, S. Blechert, Chem. Commun. (1999) 237. (g) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A.F. England, T. Ikariya, R. Noyori, Angew. Chem. 110 (1998) 1792; Angew. Chem. Int. Ed. Engl. 37 (1998) 1703. (h) A. Aranyos, G. Csjernyk, K.J. Szabo, J.E. Bäckvall, Chem. Commun. (Cambridge) (1999) 351.
- [2] (a) Review: W.A. Herrman, C. Köcher, Angew. Chem. 109 (1997) 2256; Angew. Chem. Int. Ed. 36 (1997) 2163. (b) W.A. Herrmann, L.J. Goossen, M. Spiegler, J. Organomet. Chem. 547 (1997) 357. (c) M.G. Gardiner, W.A. Herrmann, C.-P. Reisinger, J. Schwarz, M. Spiegler, J. Organomet. Chem. 572 (1999) 239. (d) W.A. Herrmann, M. Elison, J. Fischer, C. Köcher, G.R.J. Artus, Angew. Chem. 107 (1995) 2602; Angew. Chem. Int. Ed. Engl. 34 (1995) 2371. (e) W.A. Herrmann, C.-P. Reisinger, M. Spiegler, J. Organomet. Chem. 557 (1998) 93.
- [3] (a) T. Weskamp, W.C. Schattenmann, M. Spiegler, W.A. Herrmann, Angew. Chem. 110 (1998) 2631; Angew. Chem. Int. Ed. Engl. 37 (1998) 2490. (b) T. Weskamp, F.J. Kohl, W. Hieringer, D. Gleich, Angew. Chem. 111 (1999) 2573; Angew Chem. Int. Ed. Engl. 38 (1999) 2716. (c) J. Huang, E.D. Stevens, S.P. Nolan, J.L. Petersen, J. Am. Chem. Soc. 121 (1999) 2674.
- [4] (a) B.M. Trost, R.J. Kulawiec, J. Am. Chem. Soc. 115 (1993) 2027. (b) B.M. Trost, G. Dyker, R.J. Kulawiec, J. Am. Chem. Soc. 112 (1990) 7809. (c) B. Trost, A.B. Pinkerton, J. Am. Chem.

Soc. 121 (1999) 1988. (d) S. Dérien, B.G. Vicente, P.H. Dixneuf, Chem. Commun. (1997) 1405. (e) C.S. Yi, R. Torres-Lubian, N. Liu, Organometallics 17 (1998) 1257. (f) M. Murakami, M. Ubukata, Y. Ito, Tetrahedron Lett. 39 (1998) 7361, (g) H. Kikuchi, M. Uno, S. Takahashi, Chem. Lett. (1997) 1273. (h) C.S. Yi, N. Liu, Organometallics 17 (1998) 3158. (i) C.S. Yi, N. Liu, Organometallics 15 (1996) 3968.

- [5] W. Baratta, A. Del Zotto, P. Rigo, Chem. Commun. (Cambridge) (1997) 2163.
- [6] (a) B.K. Campion, R.H. Heyn, T.D. Tilley, J. Chem. Soc. Chem. Commun. (1988) 278. (b) T.J. Johnson, K. Folting, W.E. Streib, J.D. Martin, J.C. Huffman, S.A. Jackson, O. Eisenstein, K.G. Caulton, Inorg. Chem. 34 (1995) 488.
- [7] (a) U. Koelle, Chem. Rev. 98 (1998) 1313. (b) S.D. Loren, B.K. Campion, R.H. Heyn, T.D. Tilley, B.E. Bursten, K.W. Luth, J. Am. Chem. Soc. 111 (1989) 4712.
- [8] (a) A.J. Arduengo, M. Kline, J.C. Calabrese, F. Davidson, J. Am. Chem. Soc. 113 (1991) 9704. (b) A.J. Arduengo, M. Tamm, J.C. Calabrese, J. Am. Chem. Soc. 116 (1994) 3625.
- [9] Structural data for **2**: monoclinic space group $P2_1/n$ (no. = 14), a = 8.546(1), b = 21.440(1), c = 13.931(1) Å, $\alpha = 90, \beta =$ 99.560(1), $\gamma = 90$; W. Baratta, W.A. Herrmann, E. Herdtweck, P. Rigo, J. Schwarz, unpublished results.
- [10] For leading examples, see: (a) C.S. Yi, N. Liu, A.L. Rheingold, L.M. Liable-Sands, Organometallics 16 (1997) 3910. (b) C. Slugovc, K. Mereiter, E. Zabetz, R. Schmid, K. Kirchner, Organometallics 15 (1996) 5275. (c) C. Bianchini, P. Frediani, D. Masi, M. Peruzzini, F. Zanobini, Organometallics 13 (1994) 4616. (d) A. Haskel, T. Straub, A.K. Dash, M.S. Eisen, J. Am. Chem. Soc. 121 (1999) 3014. (e) A. Haskel, J.Q. Wang, T. Straub, T.G. Neuroud, M.S. Eisen, J. Am. Chem. Soc. 121 (1999) 3025.
- [11] (a) G.W. Parshall, S.D. Ittel, Homogeneous Catalysis, second ed., Wiley, New York, 1992. (b) W. Keim, A. Behr, M. Röper, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, vol. 8, Pergamon Press, New York 1982.
- [12] (a) B.K. Campion, R.H. Heyn, T.D. Tilley, Organometallics 9 (1990) 1106. (b) M.O. Albers, D.J.A. de Waal, D.C. Liles, D.J. Robinson, E. Singleton, M.B. Wiege, J. Chem. Soc., Chem. Commun. (1986) 1680. (c) T. Braun, M. Laubender, O. Gevert, H. Werner, Chem. Ber. 130 (1997) 559.
- [13] U. Koelle, J. Kossakowski, Inorg. Synth. 37 (1998) 2490.
- [14] (a) W.A. Herrmann, C. Köcher, L.J. Gooßen, G.R.J. Artus, Chem. Eur. J. 12 (1996) 1627. (b) M.H. Voges, C. Romming, M. Tilset, Organometallics 18 (1999) 529.